Electron scattering for neutrino physics at MAMI and MESA

Luca Doria (doria@uni-mainz.de)
PRISMA+ Cluster of Excellence and Institute for Nuclear Physics
Johannes Gutenberg University Mainz

Neutrino Cross Section Topical Group (NF06) Low Energy Neutrino and Electron Scattering Workshop

Introduction

- Experiments at MAMI (up to 1600 MeV)
 - Present
 - Future opportunities
- Future Directions: MESA (up to ~100 MeV)

Long Base-Line Experiments

Near Detector

$$N_{ND}(\nu_{\alpha}, E_R) = \int dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) \times \sigma(E_{\nu}) \times R_{\nu_{\alpha}}(E_{\nu}, E_R)$$

Far Detector

$$N_{FD}(\nu_{\alpha} \to \nu_{\beta}, E_R) = \int dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) \times \sigma(E_{\nu}) \times R_{\nu_{\alpha}}(E_{\nu}, E_R) \times P(\nu_{\alpha} \to \nu_{\beta}, E_{\nu})$$

Why electrons are relevant for neutrino physics?

Neutrino-Nucleus scattering

$$\frac{d^2\sigma}{d\Omega_{k'}d\omega} = \sigma_0 \left[L_{CC}R_{CC} + L_{CL}R_{CL} + L_{LL}R_{LL} + L_{T}R_{T} \pm L_{T'}R_{T'} \right]$$

(Unpolarized) Electron-Nucleus scattering

$$\frac{d^2\sigma}{d\Omega d\omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{Q^4}{\vec{q}^4} R_L(q) + \left(\frac{1}{2}\frac{Q^2}{\vec{q}^2} + \tan^2\frac{\theta}{2}\right) R_T(q)\right] = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\sigma_L + \sigma_T\right]$$

Use electrons for testing neutrino-nucleus interactions generators.

The MAMI Facility

The Racetrack Microton (Institute for Nuclear Physics, U. Mainz)

A1 Collaboration

Spectrometers

3pecii oilleiei 3			
	A	В	C
Configuration	QSDD	D	QSDD
Max.Momentum (MeV)	735	870	551
Solid Angle (msr)	28	5,6	28
Mom. Resolution	10-4	10-4	10-4
Pos. Res at Target (mm)	3-5	1	3-5

The MESA Facility

MESA: Mainz Energy-Recovery Superconducting Accelerator

Energy Recovery mode:

The beam is reinserted after 3 recalculations in couterphase: the energy goes back to the cavities and the beam is dumped at 5 MeV.

The MAGIX experiment

The MAGIX experiment

The MAGIX experiment

Rotation: 15°-165°

Detectors:

- Low-mass GEM-based TPC.
- Plastic Scintillators for triggering and veto.

Timing

- TPC trigger: ~1 ns
- coincidence time STAR↔PORT: ~100 ps

Focal Plane resolutions (p-dependent etc)

• positions: ~100 µm angles: ~3.5 mrad

Expected Resolution

- $dp/p: 6 \times 10^{-5}$
- in-plane angle ϕ_0 : 6.5 mrad
- oop angle θ_0 : 1.6 mrad vertex y_0 : 60 μ m

Acceptances

- momentum acceptance: ± 15 %
- solid angle: 18 msr

feed through

- * Supersonic gas flow from Laval nozzle
- * Supersonic shockwaves and clustering at cryogenic temperatures limit gas diffusion
- * mm-wide collimated gas stream
- * Well tested with hydrogen ("proton target")
- * Successfully operated with <u>argon</u> for the first time: milestone for MAGIX

B.S. Schlimme et al., Nucl. Instr. Meth. Phys. Res. A 1013, 165668 (2021)

S. Grieser et al., Nucl. Instr. Meth. A 906, 120-126 (2018)

(Near?) future: Oxygen

Waterfall target

- * Density = 28 mg/cm^2
- * Laser-monitored
- * Other option: high-pressure target

N. Voegel, J. Friedrich, Nucl. Instr. Meth. 198, 293 (1982)

Data Taking Campaigns: Present and Future

Electron Scattering Dataset

MAMI ¹²C data

- * Analysis: M. Mihovilovic (J.Stefan Inst.)
- * GENIE (2.x tune) from A.Ankowski
- * MEC / Resonance region more difficult to describe

- * Quasi-Elastic region well described by theory
- * Data Megias et al. model

MAMI ⁴⁰Ar data

- * Data taken 2 weeks ago
- * First measurement on argon with jet target
 - Key milestone for MAGIX
 - Very low background
 - Gas jet: working towards liquid phase
- * Luminosity to be calibrated
- * Data at 20° to be analysed
- * Plan: measure 32° ("Frascati kinematics")
- * Move to higher angles if possible.
- * Take data at lower beam energy (see next slide)
- * ~6h measurement showed here.

18

MAMI ⁴⁰Ar data (low energy)

Modeling quasielastic interactions of monoenergetic kaon decay-at-rest neutrinos

A. Nikolakopoulos, ¹ V. Pandey, ², * J. Spitz, ³ and N. Jachowicz ¹, [†]

¹Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

²Department of Physics, University of Florida, Gainesville, FL 32611, USA

³University of Michigan, Ann Arbor, MI, 48109, USA

https://arxiv.org/abs/2010.05794

Proton beam $E > \sim 3 \, \text{GeV}$ $K^+ \to \mu^+ \nu_\mu$ Kaon decay-at-rest odels. Trino beam. $K^+ \to \mu^+ \nu_\mu$ $K^+ \to \mu$

target

Investigate argon at 235 MeV for testing low-energy nuclear models. Kaon-DAR is an opportunity for obtaining a mono-energetic neutrino beam.

- * MAMI can produce a 240 MeV beam.
- * MESA: energy is too low.
- * The jet-target at MAMI would be perfect (no walls, lower bkgs at low energy).
- * Test measurement planned for NEXT week: likely last chance before MESA operation.

* For the future: high-pressure argon target? (more backgrounds, but feasible).

Summary and Future plans

Available beams:

up to 1.6 GeV at MAMI (10-100 uA current): optimal for T2K, or 1st maximum in DUNE, K-DAR physics, ... 100-150 MeV at MESA (~mA current): interesting for SN neutrinos, DM searches, COHERENT physics, ...

Detectors:

A1@MAMI: 3 magnetic spectrometers, neutron detector, pion spectrometer.

MAGIX@MESA: 2 magnetic spectrometers, silicon detectors.

Targets:

<u>A1</u>: solid-state (e.g. Be, C, Ca, ...), high-P (e.g. O, Ar, Xe), cryogenic (H, 2H, 3H, 3He, 4He), waterfall (H₂O) <u>MAGIX</u>: gas-jet target (H, Ar, Xe, O??, ...). Possibility for solid-state (if beam-dump available)

Physics opportunities:

A1: inclusive and exclusive cross sections (exclusive: real target for neutrino physics and test for generators)

MAGIX: inclusive and exclusive cross sections (test for generators like MARLEY).

Complementarity with a JLab program at higher energies

Interesting for nuclear structure and reactions physics (modern ab-initio theory)

Exclusive channels capabilities:

N(e,e'p)N', N(e,e'pp)N'. Neutron and pion production channels require more study but feasible in principle.